35 research outputs found

    Fluorescence molecular tomography: Principles and potential for pharmaceutical research

    Get PDF
    Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue’s optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non-invasively in the intact organism is highly attractive from a diagnostic point of view but even more so for the drug developer, who can use the techniques for proof-of-mechanism and proof-of-efficacy studies. This review shall elucidate the current status and potential of fluorescence tomography including recent advances in multimodality imaging approaches for preclinical and clinical drug development

    Multimodal imaging of pancreatic beta cells in vivo by targeting transmembrane protein 27 (TMEM27)

    Get PDF
    Aims/hypothesis: Non-invasive diagnostic tools specific for pancreatic beta cells will have a profound impact on our understanding of the pathophysiology of metabolic diseases such as diabetes. The objective of this study was to use molecular imaging probes specifically targeting beta cells on human samples and animal models using state-of-the-art imaging modalities (fluorescence and PET) with preclinical and clinical perspective. Methods: We generated a monoclonal antibody, 8/9-mAb, targeting transmembrane protein 27 (TMEM27; a surface N-glycoprotein that is highly expressed on beta cells), compared its expression in human and mouse pancreas, and demonstrated beta cell-specific binding in both. In vivo imaging was performed in mice with subcutaneous insulinomas overexpressing the human TMEM27 gene, or transgenic mice with beta cell-specific hTMEM27 expression under the control of rat insulin promoter (RIP-hTMEM27-tg), using fluorescence and radioactively labelled antibody, followed by tissue ex vivo analysis and fluorescence microscopy. Results: Fluorescently labelled 8/9-mAb showed beta cell-specific staining on human and mouse pancreatic sections. Real-time PCR on islet cDNA indicated about tenfold higher expression of hTMEM27 in RIP-hTMEM27-tg mice than in humans. In vivo fluorescence and PET imaging in nude mice with insulinoma xenografts expressing hTMEM27 showed high 8/9-mAb uptake in tumours after 72h. Antibody homing was also observed in beta cells of RIP-hTMEM27-tg mice by in vivo fluorescence imaging. Ex vivo analysis of intact pancreas and fluorescence microscopy in beta cells confirmed these findings. Conclusions/interpretation: hTMEM27 constitutes an attractive target for in vivo visualisation of pancreatic beta cells. Studies in mouse insulinoma models and mice expressing hTMEM27 demonstrate the feasibility of beta cell-targeted in vivo imaging, which is attractive for preclinical investigations and holds potential in clinical diagnostic

    Tight contact technique during side-to-side laser tissue soldering of rabbit aortas improves tensile strength

    No full text
    BACKGROUND: Cerebral revascularization may be indicated either for blood flow preservation or flow augmentation, often in clinical situations where neither endovascular nor standard surgical intervention can be performed. Cerebral revascularization can be performed by using a temporary occlusive or a non-occlusive technique. Both of these possibilities have their specific range of feasibility. Therefore non-occlusive revascularization techniques have been developed. To further reduce the risks for patients, less time consuming, sutureless techniques such as laser tissue soldering are currently being investigated. METHOD: In the present study, a new technique for side-to-side anastomosis was developed. Using a "sandwich technique", two vessels are kept in close contact during the laser soldering. Thoraco-abdominal aortas from 24 different rabbits were analyzed for laser irradiation induced tensile strength. Two different irradiation modes (continuous and pulsed) were used. The results were compared to conventional, noncontact laser soldering. Histology was performed using HE, Mason's Trichrome staining. FINDINGS: The achieved tensile strengths were significantly higher using the close contact "sandwich technique" as compared to the conventional adaptation technique. Furthermore, tensile strength was higher in the continuously irradiated specimen as compared to the specimen undergoing pulsed laser irradiation. The histology showed similar denaturation areas in both groups. The addition of a collagen membrane between vessel components reduced the tensile strength. CONCLUSION: These first results proved the importance of close and tight contact during the laser soldering procedure thus enabling the development of a "sandwich laser irradiation device" for in vivo application in the rabbit

    Definition of a spectral mismatch index for spectral power distributions

    No full text
    7 págs., 7 figs., 1 tab.The technical committee TC 2-90 (“LED Reference spectrum for photometer calibration”) has been recently created by CIE to investigate, select and publish an LED Reference spectrum to complement the CIE Standard Illuminant A in photometric calibrations. This task additionally requires defining a spectral mismatch index to account for the match of spectral power distributions (SPDs) of real sources to the selected reference spectrum. The objective of this work is to propose such a spectral mismatch index, and to evaluate its performance using real and representative LED spectral power distributions and relative spectral responsivities of photometers.The work leading to this study is partly funded by the European Metrology Programme for Innovation and Research (EMPIR) Project 15SIB07 PhotoLED ‘Future Photometry Based on Solid State Lighting Products’. The EMPIR initiative is cofunded by the European Union’s Horizon 2020 research and innovation programme and the EMPIR Participating States

    Definition of a spectral mismatch index for spectral power distributions

    No full text
    CIE 2019, Washington DC, June 14 to 22, 2019. -- http://washington2019.cie.co.atTo investigate, select and publish an LED reference spectrum to complement the CIE Standard Illuminant A in photometric calibrations, a new technical committee has been recently created by CIE. This technical committee requires defining a spectral mismatch index to quantify the match of spectral power distributions (SPDs) of real sources to the selected reference spectrum. A proposal for such an index is given here, assuming that the spectral mismatch index of the SPD of a real source is directly related to the spectral mismatch systematic error introduced when the photometric quantity is measured using a photometer which is calibrated to a light source with the reference SPD. Finally, the value of this index is discussed and interpreted in photometric terms
    corecore